隨著(zhù)科學(xué)技術(shù)的不斷進(jìn)步,交通運輸車(chē)輛逐漸向高速化、輕量化和低能耗的趨勢發(fā)展。列車(chē)速度的提高,制動(dòng)系統承受著(zhù)巨大的載荷和動(dòng)量,這對制動(dòng)技術(shù)提出了更高的要求,在緊急制動(dòng)情況下,全部能量需要完全由摩擦副承擔,對于制動(dòng)摩擦狀況,摩擦副處于應力大、溫度高的干摩擦狀態(tài),在摩擦表面形成了厚度為幾微米到幾十微米的第三體。第三體的形態(tài)和分布狀況與材料的成分和摩擦條件密切相關(guān),它是影響材料的耐磨性和摩擦系數穩定性的一個(gè)重要因素。因此,認識和掌握摩擦過(guò)程中產(chǎn)生的第三體對材料的摩擦磨損性能的影響越來(lái)越受到重視。諸如關(guān)注燒結材料的成分、含量等,研究所產(chǎn)生的第三體對材料摩擦磨損性能的影響,關(guān)注燒結材料成分與產(chǎn)生第三體之間的關(guān)系,這些工作認為通過(guò)調節材料內部各種燒結成分含量的不同會(huì )導致所產(chǎn)生第三體的作用不同。因此,為了系統研究摩擦面第三體對摩擦性能的影響機理,本文采取對Q235鋼添加銅粉的方法,研究了外源第三體對材料摩擦性能的影響,并考慮了摩擦順序的作用。
實(shí)驗用粉末原料為電解銅粉,銅粉的純度為99.6%,顆粒粒度為300目;試樣材料為Q235鋼,加工成直徑為17mm,厚度為5mm的試樣。摩擦磨損試驗在GF150D定速摩擦機上進(jìn)行,對偶盤(pán)材料為H13,摩擦半徑150mm,速度為100~1000r/min。在每個(gè)速度下的摩擦時(shí)間均為10s。摩擦順序有兩種:順序一,從低速向高速進(jìn)行;順序二,從高速向低速進(jìn)行。
添加外源銅粉后Q235鋼的摩擦系數增加。一方面外源銅粉本身作為第三體參與摩擦試驗,增加了摩擦副微凸體之間的嚙合程度,增加了材料的摩擦阻力,進(jìn)而起到提高摩擦系數的作用;另一方面,添加外源銅粉后改善了材料的性能,提高了材料的硬度,使得加入外源銅粉后Q235鋼的摩擦系數在較高速度下高于未添加銅粉的Q235鋼材料的摩擦系數。
未加銅粉的Q235鋼材料,在高速下表面形成的第三體層隨著(zhù)摩擦速度的減小而不斷剝落,增加了微凸體之間的嚙合程度,使得摩擦順序二的摩擦系數高于摩擦順序一的。加入外源銅粉后Q235鋼表面的摩擦性能得到了改善,提高了材料的硬度,在高速下所形成第三體氧化膜在速度下降過(guò)程中對切削阻力的貢獻,更提高了摩擦順序二下的摩擦系數。